HomeРазноеОпыт по биологии с картофелем и йодом: Опыты с картофелем — Сайт о картофеле

Опыт по биологии с картофелем и йодом: Опыты с картофелем — Сайт о картофеле

Содержание

Лабораторная работа для 6 класса (внеурочная деятельность) по теме «Йод как индикатор»

Лабораторная работа Опыты с йодом

Наверняка вы знаете о том, как картофель окрашивался в синий цвет, когда на него капали разведенным раствором йода. Нечто подобное, но в более занятной форме, мы проделаем и сегодня.

1 Опыт «В поисках крахмала»

приготовим раствор йода. Для этого наливаем в стаканчик воду и капаем пипеткой несколько капель йода, хорошо размешиваем.

Зачем делать раствор, если можно капать готовый спиртовой йод?

При использовании готового йода, крахмал окрасится в черный цвет из-за высокой концентрации йода. Соответственно, наглядность будет потеряна: различать насыщенно коричневый и черный цвет может быть проблематично. При низкой концентрации йода в растворе, капли йода будут выглядеть слегка желтоватыми, а места с крахмалом – сине-фиолетовыми.

Итак, выкладываем на тарелку наши продукты и капаем на них раствором йода с помощью пипетки. Наблюдаем и обсуждаем, что окрасилось в синий цвет.

2 Опыт «Интенсивное окрашивание»

Для этого опыта нам понадобится сварить крахмальный клейстер. Клейстер нужен для того, чтобы показать, как зависит окраска крахмала от термической обработки. Берем немного крахмала и воды в пробирку и «варим» на огне несколько минут до загустения. Клейстер наливаем в стакан. Во второй стакан с водой насыпаем 0,5 чайной ложки крахмала.

капать раствор йода в каждый стаканчик. После тщательного размешивания сравнить стаканчики по интенсивности окрашивания. Сделайте вывод

Подобное различие в интенсивности окрашивания должно получится и в варианте: сырой – вареный картофель.

Опыт «Заметаем следы»

Открываем пять ампул 10% аскорбиновой кислоты и выливаем ее в стаканчик, добавляем воду. Теперь смешиваем раствор йода и раствор аскорбиновой кислоты в одном стакане, он моментально обесцвечивается.

Капните немного концентрированного йода. Что наблюдаете?

Добавьте раствор аскорбиновой кислоты в окрашенный крахмальный клейстер. Что наблюдаете?

Лабораторная работа Опыты с йодом

Наверняка вы знаете о том, как картофель окрашивался в синий цвет, когда на него капали разведенным раствором йода. Нечто подобное, но в более занятной форме, мы проделаем и сегодня.

1 Опыт «В поисках крахмала»

приготовим раствор йода. Для этого наливаем в стаканчик воду и капаем пипеткой несколько капель йода, хорошо размешиваем.

Зачем делать раствор, если можно капать готовый спиртовой йод?

При использовании готового йода, крахмал окрасится в черный цвет из-за высокой концентрации йода. Соответственно, наглядность будет потеряна: различать насыщенно коричневый и черный цвет может быть проблематично. При низкой концентрации йода в растворе, капли йода будут выглядеть слегка желтоватыми, а места с крахмалом – сине-фиолетовыми.

Итак, выкладываем на тарелку наши продукты и капаем на них раствором йода с помощью пипетки. Наблюдаем и обсуждаем, что окрасилось в синий цвет.

2 Опыт «Интенсивное окрашивание»

Для этого опыта нам понадобится сварить крахмальный клейстер. Клейстер нужен для того, чтобы показать, как зависит окраска крахмала от термической обработки. Берем немного крахмала и воды в пробирку и «варим» на огне несколько минут до загустения. Клейстер наливаем в стакан. Во второй стакан с водой насыпаем 0,5 чайной ложки крахмала.

капать раствор йода в каждый стаканчик. После тщательного размешивания сравнить стаканчики по интенсивности окрашивания. Сделайте вывод

Подобное различие в интенсивности окрашивания должно получится и в варианте: сырой – вареный картофель.

Опыт «Заметаем следы»

Открываем пять ампул 10% аскорбиновой кислоты и выливаем ее в стаканчик, добавляем воду. Теперь смешиваем раствор йода и раствор аскорбиновой кислоты в одном стакане, он моментально обесцвечивается.

Капните немного концентрированного йода. Что наблюдаете?

Добавьте раствор аскорбиновой кислоты в окрашенный крахмальный клейстер. Что наблюдаете?

Опыты и эксперименты по биологии (5 класс) на тему: Лабораторные работы 5 класс

ЛАБОРАТОРНАЯ РАБОТА № 1

по теме: «Знакомство с увеличительными приборами»

Цель: познакомиться со строением лупы и микроскопа,

научиться их сравнивать

Оборудование:  1) лупа;

               2) микроскоп.

Ход работы:

1. Найдите составные части лупы, определите ее увеличение.

2. Найдите составные части микроскопа, определите его увеличение.

3. Познакомьтесь с правилами работы с микроскопом.

Оформление результатов:

запишите в тетрадь название составных частей лупы и ее увеличение,  название составных частей микроскопа и его  увеличение.

Cделайте вывод, ответив на вопросы:  

1.почему лупа и микроскоп называются увеличительными приборами?

2. чем они отличаются?

ЛАБОРАТОРНАЯ РАБОТА № 2

по теме: «Знакомство с клетками растений»

Цель: научиться готовить временные микропрепараты,

            закрепить умение пользоваться микроскопом.

Оборудование: 1) микроскоп;

              2) предметное и покровное стекла;

              3) флакон с водой;

              4) луковица.

Ход работы:

1. На предметное стекло капните каплю воды.

2. С чешуи лука снимите кусочек кожицы, поместите его на предметное стекло и накройте покровным стеклом.

3. Подготовьте микроскоп к работе и рассмотрите микропрепарат.

Оформление результатов:

зарисуйте клетки кожицы лука, укажите увеличение микроскопа, при котором вы их увидели.

Вывод: чтобы приготовить микропрепарат, нужно…

ЛАБОРАТОРНАЯ РАБОТА № 3

по теме: «Обнаружение неорганических веществ»

Цель: — научиться проводить биологические опыты,

            -научиться пользоваться спиртовкой

Оборудование: 1)спиртовка,          

                           2) пробирка,

                      3) флакон с водой,

                       4) тесто, йод, картофель, ткань, семена растений

Ход работы:

Опыт 1. Обнаружение воды

1.Приготовить спиртовку, в пробирку положить кусочек растительной ткани, поджечь спиртовку.

Оформление результатов:

Опишите, что увидели, когда подожгли ткань.

Вывод: при нагревании в пробирке кусочков растительной ткани на стенках пробирки появляется вода.

Опыт 2.Обнаружение неорганических и органических веществ

1. Приготовить спиртовку, в пробирку положить кусочек растительной ткани, поджечь спиртовку, продолжить нагревание.

Оформление результатов:

Опишите, что увидели, когда подожгли ткань.

Вывод: при продолжительном нагревании, через некоторое время появляется дым. Это обугливаются и сгорают органические вещества. Но сгорают не все вещества- остается зола, состоящая из неорганических веществ- минеральных солей.

Опыт 3.Обнаружене белка

1.В сосуд с водой, опустить кусочек теста

Оформление результатов:

Опишите, что увидели, когда поместили тесто в воду.

Вывод: если промыть кусочек теста в сосуде с водой, в марле останется клейкая тягучая масса- клейковина. Это растительный белок.

Опыт 4. Обнаружение углевода

1.Разрезать картофель пополам, на белую часть картофеля капнуть капельку йода.

Оформление результатов:

Опишите, что увидели, когда на картофель капнули йод.

Вывод: при попадании на картофель йода, картофель синеет-значит, в ней присутствует углевод-крахмал.

Опыт 5. Обнаружение жира

1.Положить на белый лист бумаги семена растения и раздавить их.

Оформление результатов:

Опишите, что увидели, когда раздавили семена.

Вывод: Если раздавить семена растения, то на бумаге образуется масляное пятно. Значит, в состав семян входит жир.

ЛАБОРАТОРНАЯ РАБОТА № 4

по теме: «Знакомство с внешним строением растения»

Цель: познакомиться с внешним строением цветкового растения,

            научиться распознавать его вегетативные и репродуктивные органы.

Оборудование: 1) растение пастушья сумка,

                            2) лупа.

Ход работы:

1. Рассмотрите растение пастушью сумку.

2. Найдите:

   — корень и побег, определите их размеры;

   — цветки и плоды, определите их размеры, форму, окраску и количество;

   — вскройте плод, что находится внутри?

Оформление результатов: зарисуйте внешний вид растения;

пользуясь текстом учебника, подпишите  вегетативные органы пастушьей сумки зеленым цветом, а генеративные — красным.

Вывод: у цветковых растений есть следующие органы…

ЛАБОРАТОРНАЯ РАБОТА № 5

по теме: «Внешнее строение шляпочного гриба»

Цель: познакомиться со строением шляпочных грибов.  

Оборудование: 1) набор картинок шляпочных грибов;

Ход работы:

1. Рассмотрите набор картинок шляпочных грибов, разделите их на пластинчатые и трубчатые.

Оформление результатов:

1. Выпишите в тетрадь названия пластинчатых и трубчатых грибов. Напишите их сходства и различия.

Сделайте вывод об особенностях строения шляпочных грибов

ЛАБОРАТОРНАЯ РАБОТА № 6

по теме: «Строение клеток гриба на примере плесени хлеба»

Цель: -научиться самостоятельно вырастить плесень на хлебе,

           -познакомиться со строением плесневых  грибов.

Оборудование:  1) микропрепарат «Плесень мукор»;

              2) микроскоп, пипетка, предметное и покровное стекла.

Ход работы:

1. Рассмотрите под микроскопом плесневый гриб мукор, в учебнике — пеницилл.

Оформление результатов:

1. Зарисуйте мукор и пеницилл. Напишите их сходства и различия.

Сделайте вывод об особенностях строения шляпочных и плесневых грибов.

Опыт на определение крахмала в продуктах

Задали в школе по окружающему миру  (учебник А.А. Плешакова) провести опыт на определение крахмала в продуктах питания. В воду добавляем настойку йода и капаем на продукт. Если продукт посинел, крахмал в нем есть, если не посинел — то нет.

Начали мы с четырех продуктов — хлеба, картофеля, колбасы и сыра. Лешка сразу предположил, что в хлебе и картофеле крахмал будет. Я же очень «надеялась» на колбасу.

Настоящий ученый облачился в очки (мало ли что) и начал эксперимент.

Вот, что у нас получилось: в картошке и хлебе крахмал есть, а в сыре и колбасе — нет.

А далее «Остапа понесло» и мы стали добавлять новые и новые продукты.

Вывод был такой:
— крахмала много:  в хлебобулочных изделиях (хлеб, печенье, макароны), в рисе и  картофеле;
— мало крахмала в горохе, морковке, капусте;
— крахмала нет — в яблоках, в молочных продуктах (твороге, сыре), колбасных изделиях (сосиска, вареная колбаса и сырокопченая колбаса).

Лешке эксперимент очень понравился. Он попросил еще раз провести такую экспертизу, принес все свои принадлежности, включая микроскоп, и опять начал все проверять. Потом делал растворы зеленки, марганцовки и йода, смотрел как они смешиваются.

Потом и Тимка подключился

Опыт с натертой картошкой и йодом. Добавили йод в каждую ёмкость, наблюдали изменение цвета жидкостей. Цветной занимательный опыт с аммиаком

Из этой статьи вы узнаете, как протекает реакция крахмала и йода. Этот интересный химический процесс имеет практическое применение. Например, помогает узнать, содержится ли крахмал в том или ином продукте.

Для начала разберемся, что же такое крахмал

Это безвкусный белый порошок, по своей консистенции напоминающий муку. Формула крахмала (полисахарида амилозы и амилопектина) — (C₆H₁₀O₅)n.

Структура амилопектина

Крахмал является результатом природного процесса – фотосинтеза. Для растений он служит неким запасом питательных веществ, для организма человека — поставщиком важных углеводов.

Физические свойства крахмала

Нерастворим в холодной воде. Если на порошок надавить ложкой, тем самым прижав его, то слышится характерный скрип, обусловленный трением микрочастиц друг о друга.

Химические свойства крахмала

В горячей воде (C₆H₁₀O₅)n также не растворяется, но набухает до густой и вязкой субстанции, образуя коллоидную смесь под названием клейстер. Раствор крахмала в воде является неньютоновской жидкостью.

Если добавить кислоты в воду, где находится крахмал (например, H₂­SO₄), то можно наблюдать процесс гидролиза с уменьшением молекулярной массы вещества и образованием «растворимого» крахмала.

Молекулы крахмала неоднородны по своей структуре.

Также крахмал является многоатомным спиртом, который образует простые и сложные эфиры в ходе межмолекулярной дегидратации и этерификации.

Промышленным путем крахмал получают из пшеницы, картофеля, кукурузы и риса.

Впрочем, получить его несложно и в домашних условиях.

Применение крахмала

Широко используют крахмал в промышленных целях. Он находит применение при получении таких веществ, как глюкоза, патока и этанол.

Также широко используют крахмал и в текстильном производстве. Им обрабатывают ткани. На бумажных фабриках крахмал выступает в качестве гидрофильного агента — материала, повышающего прочность и улучшающего типографские качества бумаги. Также он применяется и для изготовления лекарств и продуктов питания.

В быту практически все мы используем это вещество: крахмалим , варим кисель, изготавливаем клейстер (смесь крахмала с водой и мукой) и т.д.

Реакция крахмала и йода

Гранулы пшеничного крахмала, прореагировавшего с йодом

Для этого опыта мы возьмем 5%-й спиртовой раствор , который применяется в медицине — именно с ним проводится большинство реакций в лабораториях.

Крахмал взаимодействует с йодом, образуя соединения включения, то есть клатрат. Этот химический процесс был открыт в далеком 1814 году учеными Жан Жаком Коленом и Анри-Франсуа Готье де Клобри.

Соединение включения — это особое соединение, в котором молекулы одного вещества внедряются в молекулярную структуру другого вещества.

В данном случае молекулы амилозы (один из основных полисахаридов крахмала) будут «хозяевами», а молекулы йода — «гостями». Нажмите , чтобы увидеть больше необычных экспериментов с йодом.

Опыт с крахмалом и йодом в домашних условиях

Это достаточно простой химический эксперимент, который можно сделать в домашних условиях и показать детям, чтобы привить им любовь к химии.

Для этого потребуется:

  • стеклянная пробирка;
  • спиртовой раствор йода;
  • щепотка крахмала;
  • вода комнатной температуры;
  • палочка для перемешивания.

Налейте воду в пробирку и капните туда 4–5 капель йода. Добавьте щепотку крахмала и хорошо перемешайте палочкой. В итоге вы сразу получите раствор темно-синего цвета.

Результат взаимодействия крахмала с раствором йода

Кстати, этот опыт можно повторить и другим способом. Например, в небольшую горку крахмала капнуть одну капельку йода, в результате получится темно-синее пятно. Также йод можно капнуть на половинку картофеля (известен повышенным содержанием крахмала). Если опустить очищенную картофелину в холодную воду, через некоторое время в воде будут появляться частички крахмала. Если подержать очищенный картофель в руках, на них также останется крахмал.

Кстати, если потом в течение 10 секунд нагревать пробирку с раствором крахмала, йода и воды на специальной химической горелке, раствор станет бесцветным. Это объясняется тем, что соединение йода и крахмала неустойчиво, но если подержать пробирку в холодной воде, то вновь будет образовываться осадок темно-синего цвета.

При нагревании крахмала до кипячения он начинает разрушаться, и цепи амилозы будут рваться. Так образуются короткие цепочки декстринов, поэтому цвет начинает меняться. Кстати, отдельные соединения глюкозы при реакции с йодом не дают цвета.

Уравнение реакции йода и крахмала выглядит таким образом:

I₂ + (C₆H₁₀O₅)n => I₂·(C₆H₁₀O₅)n

Интересный факт: амилопектин, полисахарид крахмала при взаимодействии с I₂ дает фиолетово-красное окрашивание. Амилопектина в крахмале значительно больше, чем амилозы, которая дает синий цвет, но синий цвет перекрывает красно-фиолетовый.

Рассмотрим, как реакция на крахмал с йодом может пригодиться в жизни.

Всё просто: если у вас есть две неподписанные баночки с содой и крахмалом и не хочется определять данные вещества на вкус, капните немного йода.

Также благодаря вязкой структуре крахмала его добавляют, чтобы подделывать некоторые . Особенно это касается меда: на рынке можно встретить подделки с большим содержанием (C₆H₁₀O₅)n. Выявить крахмал можно тем же простым химическим методом в любых продуктах питания.

Муниципальное автономное общеобразовательное учреждение

«Первомайская средняя школа»

Научно-практическая конференция учащихся «Я познаю мир»

Исследовательская работа

«Крахмал. Опыты с крахмалом».

Руководитель: учитель начальных классов

Алексеева Светлана Александровна

г. Первомайск

2016 г.

Оглавление

    Введение 3 — 4

Актуальность темы

Цель исследования

Гипотеза

    Теоретическая часть 5 — 9

Получение крахмала

Свойства крахмала

Поиск крахмала в продуктах питания

Применение крахмала

    Вывод 10

    Библиографический список 12

    Приложения 13 — 17

Введение

Правильное питание – залог здоровья.

Сейчас много говорят о здоровом питании. Телевидение, журналы, газеты спорят о необходимости диет. Наряду с этим врачей тревожит другая крайность – лишний вес школьников. Особенно сильно влияет характер питания на рост и развитие детей. Чтобы человек был бодр, активен, жизнерадостен, здоров, его питание должно быть разнообразным и полезным.

О важности витаминов в рационе питания человека знает каждый школьник.

Основным источником энергии являются углеводы. Интересно узнать об углеводах больше.

Из книг мы узнали, что главные источники углеводов из пищи – хлеб, картофель, макароны, крупы, сладости, сахар, мёд. Из всех веществ, которые человек употребляет в пищу углеводы — главный источник энергии. На протяжении жизни человек в среднем потребляет около 14 тонн углеводов. В среднем наш организм получает от 50 до 70% углеводов из дневного рациона. И всё же запасов углеводов в организме немного, поэтому нам приходится снабжать ими наш организм регулярно. Конечно, потребность в углеводах зависит от энергетическ

5 продуктов для улучшения щитовидной железы

Али Куоппала | Последний отзыв: Вт, 25 сентября 2018 г.

Медицинский обзор доктора Влада Бельгиру, MD

Йод — чудесный минерал для щитовидной железы.

Щитовидная железа нуждается в нем для выработки гормона щитовидной железы Т4, гормона, жизненно важного для почти всех метаболических процессов в организме, включая выработку тестостерона.

Известно, что недостаток йода в рационе вызывает гипотиреоз (недостаточная активность щитовидной железы), что, в свою очередь, приводит к значительному снижению скорости метаболизма и ингибированию выработки тестостерона.

Несколько примеров;

Очевидно, что йод — не единственное, что нужно для здоровья щитовидной железы, но это самый важный микронутриент в создании гормонов щитовидной железы, и его дефицит обязательно вызовет серьезные проблемы в эндокринной системе. Без йода щитовидная железа просто не может производить T3 или T4.

Без дальнейших указаний, вот ваши пять продуктов с высоким содержанием йода:

1.Морские водоросли

seaweed is a rich source of iodine seaweed is a rich source of iodine Морские водоросли не являются обычным деликатесом в западном мире, по крайней мере, не в такой степени, как в Азии.

Это также может объяснить, почему японцы в среднем употребляют 1-3 мг йода в день, тогда как среднее потребление в США составляет всего 0,1-0,2 мг.

Видите ли, азиаты, как правило, потребляют много водорослей, а морские водоросли — это, пожалуй, самая плотная пища по встречающемуся в природе йоду.

Сушеные водоросли настолько богаты минералами, что в 100 граммах их может содержаться до 54 мг (36000% рекомендуемой суточной нормы).Это означает, что всего грамма сушеных водорослей достаточно, чтобы покрыть дневную потребность в йоде (и что употребление тонны водорослей — быстрый способ получить токсичные дозы минерала).

2. Устрицы

oysters are best foods for iodine oysters are best foods for iodine Если вы читали эти статьи о продуктах с высоким содержанием определенных витаминов или минералов, которые мы недавно публиковали…

… Вы, вероятно, заметили, что устрицы занимают довольно высокое место в рейтинге много питательных микроэлементов, необходимых для выработки тестостерона.

То же самое и с йодом, поскольку устрицы являются богатым природным источником микроэлементов.

В 100 граммах устрицы содержат 160 мкг йода (106% суточной нормы).

3. Дикая треска

cod is rich in iodine cod is rich in iodine Из-за истощения запасов полезных ископаемых в почве, вызванного чрезмерным «энергетическим сельским хозяйством», морепродукты долгое время были лучшим источником йода, чем все, что выращивается на суше.

Это распространяется на водоросли, моллюсков (таких как устрицы выше) и, конечно же, на рыбу.

Одна из рыб с самым высоким содержанием йода — это выловленная в дикой природе треска, которая в 100 граммах содержит 100 мкг йода (66% от суточной нормы).

Почему дикие поймали спросите вы? Просто потому, что выращиваемая на фермах рыба (и добавки для рыбьего жира) питаются соевыми гранулами и, как известно, содержат значительно больше загрязняющих веществ и токсичных тяжелых металлов. Всегда выбирайте дикие морепродукты.

4. Картофель

baked potatoes are a food that has iodine baked potatoes are a food that has iodine Не все, что выращивается на суше, бедно йодом, и многие виды картофеля являются тому подтверждением.

Картофель также является одним из лучших видов углеводов для потребления, когда целью является естественное повышение уровня тестостерона.

Они сытные, с низким содержанием калорий, без глютена (не повышают уровень пролактина) и с большим содержанием углеводов, которые идеально подходят, например, для употребления после тренировки.

Когда дело доходит до йода, хорошим источником йода является картофель (с неповрежденной кожицей). Один печеный картофель среднего размера содержит 60 мкг (40% дневной нормы) йода.

5.Клюква

cranberries are a good source of iodine cranberries are a good source of iodine Клюква богата антиоксидантами, и ее часто используют для лечения камней в почках, респираторных заболеваний и инфекций мочевыводящих путей.

Поскольку они являются хорошим источником антиоксидантов и богаты множеством витаминов и минералов, они хорошо подходят для диеты, оптимизированной для тестостерона.

Клюква также отлично подходит для всех любителей йода…

… Так как 100 граммов клюквы содержат примерно 300 мкг (200% рекомендуемой суточной нормы) микроэлементов.

Заключение

Йод важен для выработки здорового тестостерона, в основном из-за его влияния на улучшение функции щитовидной железы.

Достаточно легко получить достаточное количество йода из продуктов (особенно из морепродуктов), но если вы чувствуете, что не можете этого сделать, подумайте об использовании дополнительного йода (партнерская ссылка).

Также обратите внимание, что существует такая вещь, как слишком много йода. Некоторые говорят, что нет, но исследования показали, что лучше придерживаться рекомендованного количества и не сходить с ума от этого.

Хотите более 90 рецептов, оптимизированных для тестостерона? Посмотрите Поваренную книгу от шеф-повара по тестостерону в Анаболической академии.

Али Куоппала

Али Куоппала — основатель Anabolic Men. Он является автором и соавтором нескольких книг о мужском здоровье и занимается поиском методов оптимизации гормонального здоровья. На сегодняшний день его статьи на различных сайтах прочитаны более 15 миллионов раз. Чтобы узнать больше об Али, посетите его статью на Medium.

Последние сообщения Али Куоппала (посмотреть все)

.

5 ПРОФИЛАКТИКА ЙОДОДЕФИЦИТА | Профилактика дефицита микронутриентов: инструменты для политиков и работников общественного здравоохранения

Асукво, М. Х. 1995. Как солевые компании могут стать лидером в области йодирования: пример из Нигерии. ICCIDD Newsl. 11:31.

Бенмилуд М., М. Л. Чауки, Р. Гутекунст и др. 1994. Йодированное масло для перорального применения для коррекции йодной недостаточности: оптимальная дозировка и выбор индикатора результата. J. Clin. Эндокринол.Метаб. 79:20.

Блейхродт, Н., Р. Эскобар дель Рей, Дж. Морале де Эскобар, И. Гарсия и К. Рубио. 1989. Йододефицит. Значение для умственного и психомоторного развития у детей. В «Йоде и мозге», Г. Р. Делонг, Дж. Роббинс и П. Г. Кондлифф, ред. Нью-Йорк: Пленум.

Браверман, Л. Э., и Р. Д. Утигер, ред. 1996. Щитовидная железа, 7-е изд. Филадельфия: Дж. Б. Липпинкотт.

Цао, X-Y, X-M Цзян, А. Карим и др. 1994. Йодирование оросительной воды как метод снабжения йодом населения, страдающего острым дефицитом йода. Ланцет 344: 107.

Коннолли, К. Дж., П. О. Д. Фароа и Б. С. Хетцель. 1979. Дефицит йода у плода и двигательные способности в детстве. Ланцет ii: 1149.

Contempre, B., J. E. Dumont, J-F Denef, and M-C Many. 1995. Влияние дефицита селена на некропсис, фиброз и пролиферацию щитовидной железы: возможная роль в микседематозном кретинизме. евро. J. Endocrinol. 133: 99–109.

Корреа, Х. 1980. Исследование затрат и результатов программ приема йодных добавок для профилактики эндемического зоба и кретинизма.В книге «Эндемический зоб и эндемический кретинизм», изд. Дж. Б. Стэнбери, стр. 566–588. Нью-Йорк: Джон Вили и сыновья.

DeLange, F. 1994. Заболевания, вызванные дефицитом йода. Щитовидная железа 4: 107–128.

DeLange, F., G. Benker, P. Caron, O. Eber, W. Ott, F. Peter, et al. В прессе. Объем щитовидной железы и йод в моче у европейских школьников. Стандартизация значений для оценки йодной недостаточности. евро. Дж. Эндокринол .

Делонг, Г.R. 1989. Наблюдения за неврологией эндемического кретинизма в йоде и мозге, Г. Р. ДеЛонг, Дж. Роббинс и П. Г. Кондлифф, ред. Нью-Йорк: Пленум.

Делонг, Г. Р., Дж. Роббинс и П. Г. Кондлифф, ред. 1989. Йод и мозг. Нью-Йорк: Пленум.

Додж, П. Р., И. Рамирес и Р. Фиерро-Бенитес. 1969a. Неврологические аспекты эндемического кретинизма. В Endemic Goiter, J. B. Stanbury, ed. Научная публикация Панамериканской организации здравоохранения № 193, Вашингтон, Д.С

.

Додж, П. Р., Х. Палкес, Р. Фиерро-Бенитес и И. Рамирес. 1969b. Влияние на интеллект йода в масле, вводимого маленьким андским детям — предварительный отчет. В Endemic Goiter, J. B. Stanbury, ed. Научная публикация Панамериканской организации здравоохранения № 193, стр. 378–380, Вашингтон, округ Колумбия

Данн, Дж. Т. 1991. Борьба с ЙДН в Латинской Америке: Гватемала. IDD Newsl. 7: (2) 12.

Данн, Дж. Т. 1994a. Социальные последствия дефицита йода и значение его профилактики.В «Поврежденном мозге от дефицита йода», изд. Дж. Б. Стэнбери, стр. 309–314. Нью-Йорк: Cognizant Communications.

Данн, Дж. Т. 1994b. Бутан добился значительных успехов в искоренении ЙДЗ. IDD Newsl. 10:23.

Данн, Дж. Т. 1995. Технические аспекты йодирования соли: обновленная информация. IDD Newsl. 11: 26–30.

Данн, Дж. Т. 1996a. Боливия побеждает дефицит йода. IDD Newsl. 12: 33–34.

Данн, Дж. Т. 1996b. Нигерия продвигается к ликвидации ЙДЗ. IDD Newsl. 12: 27–28.

Dunn, J. T. 1996c. Семь смертных грехов в борьбе с эндемическим дефицитом йода и как их избежать. J. Clin. Эндокринол. Метабл. 81: 1332–1335.

.

11 достижений и открытий в биологии человека и медицине за последние десять лет

С момента завершения новаторского проекта «Геном человека» были достигнуты огромные успехи в нашем понимании биологии, науки и человеческого тела. Многие разработки были сделаны на генетическом или клеточном уровне, и они могут найти огромное применение в будущем.

От 3D-печати новых органов с использованием стволовых клеток до индивидуальной лекарственной терапии для пациентов и потенциальной защиты человеческих клеток от вирусов — последнее десятилетие уже принесло значительные плоды.По мере того, как наука совершенствуется, и наше понимание растет, следующее десятилетие или десятилетия может полностью изменить здравоохранение навсегда.

Следующие 11 далеко не исчерпывающие и не расположены в определенном порядке.

1. Трехмерная печать органов может сделать ненужным донорство органов

Одно крупное достижение в биологии человека связано с использованием трехмерных принтеров и человеческих стволовых клеток.

3D-печать развивается до такого уровня, что позволяет печатать основные запасные части для людей.Недавние разработки таких институтов, как Бристольский университет, включают использование нового вида биочернил, которые могут позволить производить сложные человеческие ткани для хирургических имплантатов в не столь отдаленном будущем.

Биочернила изготовлены из пары различных ингредиентов на полимерной основе. Один получен из морских водорослей и, следовательно, является натуральным полимером.

Второй и последний — жертвенный синтетический полимер. Каждый из этих полимеров играет свою роль в биочернилах.Синтетический компонент позволяет био-чернилам затвердеть при правильных условиях, в то время как первый добавляет дополнительную структурную поддержку.

Идея этих чернил состоит в том, чтобы обеспечить возможность 3D-печати структуры, которая может оставаться прочной при погружении в питательные вещества и не повредить какие-либо клетки, попавшие в структуру.

Остеобласты (стволовые клетки, из которых состоят кости) и хондроциты (стволовые клетки, которые помогают формировать хрящ) затем могут быть введены в полимерную структуру, напечатанную на 3D-принтере, в присутствии богатой питательными веществами среды для создания окончательного «синтетического» нового органа / структуры.

Когда этот процесс будет полностью разработан, его можно будет использовать для печати тканей пациентов с использованием их собственных стволовых клеток в будущем.

Другие разработки включают печать почек и возможность печати кожи для лечения ожогов. Может быть, это тоже ключ к бессмертию?

2. Таргетинг на конкретные лекарственные препараты может привести к концу рака

Многие ответвленные области исследований стали возможны с момента создания генома человека более 25 лет назад.Одним из чрезвычайно важных событий может стать производство генетически адаптированных лекарств, иногда называемых фармакогенетикой.

Это может потенциально включать создание целевых лекарств для лечения рака, а не использование более общих универсальных альтернатив, таких как химиотерапия. Уже есть компании, такие как Foundation Medicine, которые проводят ДНК-скрининг на раковые клетки в образцах биопсии.

Их анализ предоставляет отчет с подробным описанием генов в ДНК пациента, которые, как известно, связаны с раком, и предоставляет информацию о «действенных» мутациях.Эти действенные последовательности ДНК являются областями, в которых существующие противораковые препараты либо существуют, либо проходят испытания.

Такие отчеты помогут врачам и пациентам выписывать определенные лекарства для лечения конкретной формы рака.

Будущая эффективность этого вида лечения может привести к огромным открытиям в области человеческого генома и, возможно, гарантировать успех лечения рака.

Источник: Pixabay

3. Чтобы предотвратить испуг, преобразовав клетки из одной формы в другую

В начале прошлого года было объявлено, что исследователи, возможно, совершили огромный прорыв в заживлении ран.Возможно, они нашли способ «взломать» ткань в ране для восстановления кожи, не оставляя рубцовой ткани.

Врачи из Медицинской школы Перельмана Пенсильванского университета, Лаборатории биологии развития и регенерации Пликуса Калифорнийского университета в Ирвине много лет сотрудничали и наконец опубликовали свои выводы в январе 2017 года.

Они нашли метод преобразования миофибробласты (обычная заживающая клетка в ранах) в жировые клетки — когда-то это считалось невозможным.Хотя миофибробласты необходимы для заживления, они также являются критическим элементом в образовании рубцовой ткани.

Рубцы обычно образуются частично из-за потери подкожных жировых клеток, называемых адипоцитами. Если бы миофибробласты каким-либо образом могли быть преобразованы в жировые клетки, пугание было бы менее выраженным, если бы оно вообще было видимым.

Джордж Котсарелис, главный исследователь проекта и заведующий кафедрой дерматологии и профессор дерматологии Милтона Бикслера Хартцелла в Пенсильвании, объясняет: «По сути, мы можем манипулировать заживлением ран, чтобы это приводило к регенерации кожи, а не к рубцеванию.«

» Секрет в том, чтобы сначала регенерировать волосяные фолликулы. После этого жир будет регенерироваться в ответ на сигналы от этих фолликулов ». — продолжил Джордж.

Они обнаружили, что сигналы, по-видимому, представляют собой особый тип белка, называемый костным морфогенетическим белком (BMP).

« Обычно, Считалось, что миофибробласты неспособны стать клетками другого типа, — сказал Котсарелис. — Но наша работа показывает, что у нас есть способность влиять на эти клетки, и что они могут эффективно и стабильно превращаться в адипоциты.»- объяснил Джордж.

Это исследование может иметь другие применения для лечения болезней, а также для замедления процесса старения, в частности для предотвращения образования морщин.

Источник: Blausen Gallery 2014

4.« Весенняя уборка »митохондриальной ДНК может предотвратить старение

Исследователи недавно открыли метод манипулирования ДНК стареющих клеток в человеческом теле. Ученые из Калифорнийского технологического института и Калифорнийского университета в Лос-Анджелесе смогли разработать методику работы с энергетическими установками клетки — митохондриями.

Старение человеческого тела отчасти является следствием совокупности ошибок копирования в нашей ДНК с течением времени. Это плохое копирование ДНК приводит к укорочению теломер и другим мутациям.

Митохондрии являются одними из худших виновников этого в клетке человека, хотя митохондриальная ДНК (сокр. МтДНК) отделена от ДНК основного ядра клетки.

Каждая клетка содержит сотни митохондрий, и каждая митохондрия несет свой собственный пакет мтДНК. мтДНК будет иметь тенденцию накапливаться в клетке с течением времени и в целом делится на два типа; нормальная мтДНК и мутантная мтДНК.

Когда последний накапливается в клетке до определенной концентрации, он перестает нормально функционировать и умирает.

«Мы знаем, что повышенная частота мутаций мтДНК вызывает преждевременное старение», — пояснил Брюс Хэй, профессор биологии и биологической инженерии Калифорнийского технологического института. «Это, в сочетании с тем фактом, что мутантная мтДНК накапливается в ключевых тканях, таких как нейроны и мышцы, которые теряют функцию с возрастом, предполагает, что, если бы мы могли уменьшить количество мутантной мтДНК, мы могли бы замедлить или обратить вспять важные аспекты старения.»

Команда смогла найти способ полного удаления мутированной мтДНК из митохондрий, таким образом предотвращая проблемы, создаваемые накопленными уровнями мтДНК в клетке.

Мутантная мтДНК также была связана с дегенеративными заболеваниями, такими как болезнь Альцгеймера, возраст потеря мышечной массы и болезнь Паркинсона. Унаследованная мтДНК также может быть фактором, способствующим развитию аутизма.

Источник: Национальный исследовательский институт генома человека / CCO

5. 79-й орган человеческого тела был обнаружен в 2017 году.

В начале 2017 года ученые официально добавили новый орган в «Анатомию Грея».Орган был буквально скрыт у всех на виду на протяжении веков.

Новый орган, получивший название брыжейки, теперь официально является 79-м органом человеческого тела. Название органа переводится как «в середине кишечника» и представляет собой двойную складку в брюшине (или выстилку брюшной полости), которая прикрепляет кишечник к брюшной стенке.

Первоначально считалось, что брыжейка является фрагментированной структура, которая была частью пищеварительной системы, но они обнаружили, что это один непрерывный орган.

Впервые он был идентифицирован Дж. Кэлвином Коффи (профессором Университета Лимерика), который вскоре после этого опубликовал свои открытия в «Ланцет». Каким бы увлекательным ни было это развитие, функция нового органа все еще остается загадкой.

«Когда мы подходим к этому, как к любому другому органу… мы можем классифицировать заболевания брюшной полости с точки зрения этого органа», — объяснил Коффи.

«Мы определили анатомию и структуру. Следующий шаг — функция, — расширил Коффи. «Если вы понимаете функцию, вы можете определить аномальную функцию, и тогда у вас есть болезнь.Сложите их все вместе, и вы получите область науки о мезентерии … основу для совершенно новой области науки ».

Теперь, когда он классифицируется как официальный орган, исследователи должны приступить к изучению его реальной роли в организме. По мере того, как это становится более понятным, это может привести к менее инвазивным операциям, выполняемым хирургами.

Это может уменьшить осложнения, ускорить период восстановления и даже снизить затраты.

6.Исследователи обнаружили новый тип клеток мозга

Ранее в этом году исследователи опубликовали в «Current Biology» отчет о том, что медиальная височная доля человека (MTL) содержит новый тип клеток, никогда ранее не встречавшийся у людей, — так называемые клетки-мишени.

Команда, возглавляемая Шуо Вангом, доцентом кафедры химической и биомедицинской инженерии Университета Западной Вирджинии, обнаружила новые клетки, проводя наблюдения за пациентами с эпилепсией. Они могли регистрировать движения глаз и активность отдельных нейронов в MTL и медиальной передней коре головного мозга пациентов.

«Во время целенаправленного визуального поиска эти целевые клетки сигнализируют, является ли зафиксированный в данный момент элементом целью текущего поиска», — пояснил Ван. «Этот целевой сигнал был поведенчески релевантным, потому что он предсказывал, обнаружил ли субъект или пропустил фиксированную цель, то есть не смог прервать поиск».

Их результаты показали, что эти клетки мало «заботились» о содержании цели. Они только казались чтобы «сосредоточиться» на том, были ли они целью поиска или нет.

«Этот тип ответа принципиально отличается от ответа, наблюдаемого в областях, расположенных выше по течению от MTL, то есть в нижней височной коре, где клетки визуально настраиваются и модулируются только присутствием или отсутствием цели в дополнение к этой визуальной настройке», — сказал Ван. . «Открытие этого нового типа клеток в MTL, у людей, демонстрирует прямые доказательства наличия в MTL определенного нисходящего сигнала актуальности цели».

Источник: Pixabay

7. Полное секвенирование генома может стать обычным делом

Регулярное секвенирование генома как часть рутинной клинической помощи может стать стандартной практикой в ​​недалеком будущем.В 2011 гг. исследователей из Медицинского колледжа Висконсина предприняли шаги, чтобы впервые разработать процесс секвенирования всего генома, который они надеялись сделать стандартной практикой.

Он был нацелен на тестирование детей на редкие наследственные заболевания, которые очень сложно диагностировать с помощью традиционных методов. Этот тип диагностического инструмента уже прошел долгий путь с момента завершения новаторского проекта генома человека.

Стоимость секвенирования всего генома пациента сейчас примерно такая же, как секвенирование всего нескольких генов с помощью коммерческих диагностических тестов.Еще в 2011 он уже начал пожинать плоды, будучи способным точно определять конкретные генетические мутации, лежащие в основе набора редких и трудно диагностируемых заболеваний.

В некоторых случаях он также оказывал услуги по спасению жизни.

Конечно, секвенирование всей ДНК человека — это простая часть, сложная часть — выяснить, что означает последовательность. Команда разработала собственное программное обеспечение для отслеживания последовательности и выявления любых представляющих интерес мутаций и поиска совпадений в генетических базах данных.

Команда произвела фурор в декабре 2010 года, когда они смогли определить причину плохого здоровья ребенка после 100 хирургических процедур и трех лет неудачного лечения. Оказалось, что в Х-хромосоме мальчика произошла мутация, связанная с интересным иммунным расстройством.

Это было настолько редко, что считается уникальным и не было найдено ни у одного другого животного или человека в то время. Вооруженные информацией, врачи смогли провести трансплантацию основной крови, и восемь месяцев спустя мальчик выписался из больницы и стал здоровым.

Этот метод, вероятно, станет обычным явлением в будущем и, вероятно, будет востребован многими страховыми компаниями в недалеком будущем.

Источник: Pixabay

8. CRISPR-Cas9 изменил правила игры в биологических исследованиях человека

CRISPR или регулярные кластерные короткие палиндромные повторы были впервые обнаружены в архее, а затем и в бактериях, Франсисизо Мохика из Университета Аликанте, Испания, в 2007 году. Экспериментальные наблюдения позволили ему отметить, что эти фрагменты генетического материала являются неотъемлемой частью защитных механизмов родительских клеток для защиты от вторгшихся вирусов.

CRISPR — это фрагменты генетического кода, которые прерываются «спейсерными» последовательностями, которые действуют как иммуно-память клетки от предыдущих «инфекций». Археи и бактерии используют CRISPR для обнаружения и борьбы с захватчиками в процессе, называемом бактериофагом в будущем.

CRISPR стал общественным достоянием, когда в 2013 Zhang Lab смогла продемонстрировать первое редактирование генома млекопитающих с использованием CRISPR-Cas9 (CRISPR-ассоциированный белок 9).

Этот успешный эксперимент показал, что CRISPR можно использовать для нацеливания на определенные части генетического кода животного и редактирования ДНК на месте.

CRISPR может быть невероятно важным для будущего человеческой биологии за счет постоянной модификации генов в живых клетках для исправления будущих потенциальных мутаций и лечения причин заболеваний.

Это достаточно впечатляет, но технология CRISPR постоянно совершенствуется и совершенствуется.

Многие отраслевые эксперты считают, что CRISPR-Cas9 имеет светлое будущее. Вероятно, он станет жизненно важным диагностическим и корректирующим инструментом в области биологии человека и может быть использован для лечения рака и редких заболеваний, таких как муковисцидоз.

9. Иммунотерапия CAR T-клетками может стать концом пути для лечения рака

CAR T-клеточная иммунотерапия — одно из потенциальных достижений в исследованиях, которые могут положить конец угрозе рака для всех нас.

За последние несколько лет иммунотерапия сильно развивалась и обещает задействовать и укрепить собственные врожденные защитные системы пациента для нацеливания и атаки опухолей. Эта форма лечения стала известна как «пятый столп» лечения рака.

Т-клетки в здоровой иммунной системе неустанно патрулируют ваше тело в поисках чужеродных захватчиков, таких как бактерии и вирусы.К сожалению, они, как правило, неэффективны против раковых клеток, поскольку, в конце концов, способны «прятаться» от иммунной системы организма, будучи неконтролируемыми естественными клетками.

Если бы ученые могли поработать с естественной защитной системой организма, чтобы идентифицировать раковые клетки как чужеродного захватчика, это могло бы предоставить средства для их автоматического поиска и уничтожения. Это обещанный «Святой Грааль» Т-клеточной иммунотерапии.

CAR Т-клеточная терапия подпадает под баннер адаптивного переноса клеток (ACT), который может быть далее подразделен на несколько типов (один из которых с CAR).Тем не менее, CAR T-клеточная терапия на сегодняшний день опережает другие методы лечения.

Некоторые методы лечения CAR-T-клетками были даже одобрены FDA в 2017 году. Одним из таких примеров является лечение острого лимфобластного лейкоза (ОЛЛ) с использованием этой техники.

Но пока мы не увлеклись его потенциалом на будущее, он все еще находится в зачаточном состоянии.

Стивен Розенберг, доктор медицинских наук, руководитель отделения хирургии Центра исследований рака (CCR) NCI, тем не менее, возлагает большие надежды на терапию.

«В следующие несколько лет, — сказал он, — я думаю, мы увидим резкий прогресс и раздвинем границы того, что многие люди считали возможным с помощью этого лечения, основанного на переносе клеток».

Источник: Национальный институт здоровья / Wikimedia Commons

10. Были идентифицированы гены, определяющие форму носа

Еще в 2016 году исследователей из Университетского колледжа Лондона смогли идентифицировать четыре гена, определяющих форму человека. носы — впервые.Команда сосредоточила свое исследование на ширине и остроте носа, которые сильно различаются у разных людей.

Проведя исследования с участием более 6000 человек в Латинской Америке, они смогли идентифицировать гены, определяющие форму носа и подбородка.

Согласно их отчету:

«GLI3, DCHS2 и PAX1 — все гены, которые, как известно, управляют ростом хряща — GLI3 дал самый сильный сигнал для контроля ширины ноздрей, DCHS2, как было обнаружено, контролировал остроту носа, а PAX1 также влияет на ширину ноздрей. .Было замечено, что RUNX2, который стимулирует рост костей, контролирует ширину переносицы. «-Sci News

Это исследование может найти будущее применение при выявлении врожденных дефектов у детей и может быть очень полезным для судебно-медицинских исследований» холодного случая «.

11. Последние разработки в области биологии человека может сделать нас антивирусной защитой

Недавние исследования научных групп, таких как Genome Project-write (GP-Write), планируют сделать человеческие клетки «вирусостойкими». Они также планируют сделать клетки устойчивыми к замораживанию, радиации и т.д. старение и, как вы уже догадались, рак.

Конечная цель — создать «супер-клетки», которые в случае успеха имели бы огромные разветвления для человеческой биологии и общества в целом.

Джеф Боке, директор Института системной генетики и Медицинского центра Нью-Йорка в Лангоне недавно сказал: «Есть очень веские основания полагать, что мы можем производить клетки, которые будут полностью устойчивы ко всем известным вирусам».

«Это должно быть. также можно разработать другие черты, включая устойчивость к прионам и раку.Он расширился.

Как бы амбициозно это ни звучало, у них на самом деле есть более грандиозные планы, как мы надеемся, однажды полностью синтезировать геном человека в лаборатории.

Их цели будут достигнуты с помощью процесса, называемого перекодированием ДНК. Этот процесс предотвратит использование вирусами человеческих клеток, перепрограммируемых как вирусные фабрики.

«Общий проект GP-write направлен на написание, редактирование и построение больших геномов. Мы будем генерировать огромное количество информации, связывающей последовательность нуклеотидных оснований в ДНК с их физиологическими свойствами и функциональным поведением, что позволит разрабатывать более безопасные, менее — дорогостоящие и более эффективные терапевтические препараты и широкий спектр применения в других областях, таких как энергетика, сельское хозяйство, здравоохранение, химическая промышленность и биовосстановление », — пояснил Бёке.

Если их исследования увенчаются успехом, мы сможем изменять и уточнять человеческий геном по своему желанию и с гораздо большей скоростью, чем эволюция. Возможности (и опасности) для человечества огромны.

Источник: Pixabay .

Что такое биология? | Живая наука

Биология — наука о жизни. Его название происходит от греческих слов «биос» (жизнь) и «логос» (учеба). Биологи изучают структуру, функции, рост, происхождение, эволюцию и распространение живых организмов. Обычно считается, что существует не менее девяти «зонтичных» областей биологии, каждая из которых состоит из нескольких подполей.

  • Биохимия: изучение материальных веществ, из которых состоят живые существа
  • Ботаника: изучение растений, включая сельское хозяйство
  • Клеточная биология: изучение основных клеточных единиц живых существ
  • Экология: изучение того, как организмы взаимодействуют со своей средой
  • Эволюционная биология: изучение происхождения и изменений разнообразия жизни с течением времени
  • Генетика: исследование наследственности
  • Молекулярная биология: изучение биологических молекул
  • Физиология: изучение биологических молекул функции организмов и их частей
  • Зоология: изучение животных, включая поведение животных

Сложность этой огромной идеи усложняется тем фактом, что эти области пересекаются.Невозможно изучать зоологию, не зная много об эволюции, физиологии и экологии. Вы не можете изучать клеточную биологию, не зная также биохимию и молекулярную биологию.

Структура понимания

Все отрасли биологии могут быть объединены в рамках пяти основных представлений о живых существах. Изучение деталей этих пяти идей обеспечивает бесконечное очарование биологических исследований:

  • Теория клетки : Теория клетки состоит из трех частей: клетка является основной единицей жизни, все живые существа состоят из клеток и всего клетки возникают из уже существующих клеток.
  • Энергия : Все живые существа нуждаются в энергии, и энергия течет между организмами, а также между организмами и окружающей средой.
  • Наследственность : Все живые существа имеют ДНК, и генетическая информация кодирует структуру и функции всех клеток.
  • Равновесие : Все живые существа должны поддерживать гомеостаз, состояние сбалансированного равновесия между организмом и окружающей его средой.
  • Evolution : это общая объединяющая концепция биологии.Эволюция — это изменение во времени, которое является двигателем биологического разнообразия.

Биология и другие науки

Биология часто изучается вместе с другими науками, такими как математика и инженерия, и даже с общественными науками. Вот несколько примеров:

  • Биофизика предполагает сопоставление жизненных закономерностей и их анализ с помощью физики и математики, согласно Биофизическому обществу.
  • По данным НАСА, астробиология — это исследование эволюции жизни во Вселенной, включая поиск внеземной жизни.
  • Биогеография — это исследование распределения и эволюции форм жизни и причин распространения, согласно Дартмутскому колледжу.
  • Биоматематика включает создание математических моделей для лучшего понимания закономерностей и явлений в мире биологии, согласно данным Университета штата Северная Каролина.
  • Биоинженерия — это применение инженерных принципов к принципам биологии и наоборот, по данным Калифорнийского университета в Беркли.
  • Социологи часто изучают, как биология может формировать социальные структуры, культуры и взаимодействия, по данным Американской социологической ассоциации.

История биологии

Наше увлечение биологией имеет давнюю историю. Даже древним людям приходилось изучать животных, на которых они охотились, и знать, где найти растения, которые они собирали для еды. Изобретение земледелия было первым великим достижением человеческой цивилизации. Медицина была важна для нас с самого начала. Самые ранние известные медицинские тексты взяты из Китая (2500 г. до н. Э.), Месопотамии (2112 г. до н. Э.) И Египта (1800 г. до н. Э.).

В классические времена Аристотель часто считался первым, кто практиковал научную зоологию.Известно, что он провел обширные исследования морской жизни и растений. Его ученик Теофраст написал один из самых ранних известных на Западе ботанических текстов в 300 г. до н. Э. о структуре, жизненном цикле и использовании растений. Римский врач Гален использовал свой опыт в ремонте гладиаторов для арены, чтобы написать тексты о хирургических процедурах в 158 году нашей эры.

В эпоху Возрождения Леонардо да Винчи рисковал порицать, участвуя в вскрытии человека и создавая подробные анатомические рисунки, которые до сих пор считаются одними из них. самый красивый из когда-либо созданных.Изобретение печатного станка и возможность воспроизводить иллюстрации на дереве означает, что информацию стало намного легче записывать и распространять. Одна из первых иллюстрированных книг по биологии — это ботанический текст, написанный немецким ботаником Леонардом Фуксом в 1542 году. Биномиальная классификация была открыта Каролом Линнеем в 1735 году с использованием латинских названий для группировки видов в соответствии с их характеристиками.

Микроскопы открыли новые миры для ученых. В 1665 году Роберт Гук использовал простой составной микроскоп, чтобы исследовать тонкую полоску пробки.Он заметил, что растительная ткань состоит из прямоугольных блоков, которые напомнили ему крошечные комнаты, используемые монахами. Он назвал эти единицы «ячейками». В 1676 году Антон фон Левенгук опубликовал первые рисунки живых одноклеточных организмов. Теодор Шванн добавил информацию о том, что ткани животных также состоят из клеток в 1839 году.

В викторианскую эпоху и на протяжении 19 века «естественные науки» стали чем-то вроде мании. Тысячи новых видов были обнаружены и описаны бесстрашными авантюристами, ботаниками и энтомологами.В 1812 году Жорж Кювье описал окаменелости и выдвинул гипотезу о том, что Земля претерпевала «последовательные приступы Творения и разрушения» в течение длительных периодов времени. 24 ноября 1859 года Чарльз Дарвин опубликовал «О происхождении видов» — текст, навсегда изменивший мир, показав, что все живые существа взаимосвязаны и что виды не были созданы отдельно, а возникли из наследственных форм, которые были изменены и сформированы. путем адаптации к окружающей среде.

В то время как большая часть внимания мира была сосредоточена на вопросах биологии на уровне макроскопических организмов, тихий монах исследовал, как живые существа передают черты от одного поколения к другому.Грегор Мендель теперь известен как отец генетики, хотя его статьи о наследовании, опубликованные в 1866 году, в то время остались практически незамеченными. Его работа была заново открыта в 1900 году, и вскоре последовало дальнейшее понимание наследования.

ХХ и 21 века могут быть известны будущим поколениям как начало «биологической революции». Начиная с Уотсона и Крика, объяснившего структуру и функцию ДНК в 1953 году, все области биологии расширились в геометрической прогрессии и затронули все аспекты нашей жизни.Медицина будет изменена путем разработки методов лечения, адаптированных к генетическому плану пациента, или путем объединения биологии и технологий с протезированием, управляемым мозгом. Экономика зависит от правильного управления экологическими ресурсами, баланса между потребностями человека и их сохранением. Мы можем найти способы спасти наши океаны, используя их для производства достаточного количества пищи, чтобы накормить народы. Мы можем «выращивать» батареи из бактерий или световых зданий с биолюминесцентными грибами. Возможности безграничны; биология только вступает в свои права.

Дополнительная информация от Рэйчел Росс, участника Live Science

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *